Candidate Name	Centre Number			Candidate Number						
						0				

GCE A LEVEL CHEMISTRY

A2 UNIT 3

Physical and Inorganic Chemistry

SPECIMEN PAPER

1 hour 45 minutes

Section A Section B

For Examiner's use only					
Ougation	Maximum	Mark			
Question	Mark	Awarded			
1. to 8.	10				
9.	17				
10.	14				
11.	8				
12.	12				
13.	19				
Total	80				

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a data sheet and a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 10.

SECTION A

Answer all questions in the spaces provided.

1. Circle all the acids in the following equation.

$$CH_3COOH + NH_3 \rightleftharpoons CH_3COO^- + NH_4^+$$
 [1]

2. The table shows some enthalpy change values for three compounds.

	Standard enthalpy change of hydration / kJ mol ⁻¹	Standard enthalpy change of lattice breaking / kJ mol ⁻¹
lithium fluoride	-1005	1032
potassium fluoride	-792	776
rubidium fluoride	-819	813

	State	which compound(s) you would expect to be soluble in water.	[1]
3.	(a)	Balance the equation for the reaction of sodium hydroxide with chlorine.	[1]
		Cl_2 + NaOH \rightarrow NaCl + NaClO ₃ + H ₂ O	
	(b)	Use oxidation states to show that this is a disproportionation reaction.	[1]

[1]

4. The standard electrode potential for a half-cell can be measured by connecting it to the standard hydrogen electrode shown below.

	Name th	ne solution in	the beaker an	d state its cond	entration.		[1]
5.	Put the following species in order of increasing entropy.						[1]
			Br ₂ (I)	Kr(g)	Se(s)		
	lowest					highest	
6	Λ cidifio	d notaccium	dichromato ma	y ha usad ta ay	vidiza iran(II) iana Tha	o two	

6. Acidified potassium dichromate may be used to oxidize iron(II) ions. The two relevant half equations are shown below.

Write the overall ionic equation for this reaction.

$$Cr_2O_7^{2-}$$
 + 14H⁺ + 6e \rightleftharpoons 2Cr³⁺ + 7H₂O
Fe³⁺ + e \rightleftharpoons Fe²⁺

GCE AS and A LEVEL CHEMISTRY Specimen Assessment Materials 43

7.	Carbon tetrachloride does not react with cold water, however silicon(IV) chloride reacts violently. Explain why the reactivity of these compounds is so different.	[1]
8.	Chromyl chloride is a compound containing chromium, oxygen and chlorine only It contains 33.5 % chromium and 45.8 % chlorine by mass.	' <u>-</u>
	Calculate the empirical formula of chromyl chloride.	[2]
	Empirical formula	
		10

SECTION B

Answer all questions in the spaces provided.

9.	(a)	(i)		poron in boron chloride, BCl ₃ , is described as electron deficie what is meant by the term <i>electron deficient</i> .	nt. [1]
		(ii)		$_{ m 0}$ BCl $_{ m 3}$ is mixed with ammonia a new species is formed. Ident ew species and explain how it forms.	[2]
	(b)		-	species formed in <i>(a)</i> (ii) can be used to produce films of oron nitride, BN.	
		(i)	Desc	form of BN has many similarities to the structure of graphite. ribe the differences between the structures of hexagonal bo e and graphite.	ron [2]
		(ii)	other	hite is commonly used as a lubricant as the layers slip over earlier in this softnesses of absorbed molecules such as O_2 , H_2O and CO_2 .	
			an at moled then	mple of graphite was repeatedly exposed to a vacuum and the mosphere of pure $H_2O(g)$ to remove all traces of absorbed cules other than H_2O , leaving a sample of mass 3.645g. This heated under vacuum until constant mass was reached, leaves of 3.592 g.	was
			I.	Explain why the sample was heated to constant mass.	[1]
			II.	Calculate the ratio of carbon atoms to water molecules in t graphite.	he [3]
				Ratio carbon : water	

Phos	phorus(III) chloride, PCI ₃ , can be produced in the equilibrium below:	
	$PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$	
(i)	A sample of PCI_5 is introduced into a sealed vessel with an initial pressure of 12.4×10^3 Pa, and the system is allowed to reach equilibrium where the partial pressure of CI_2 is 6.0×10^3 Pa.	
	Calculate the value of K_p under these conditions, giving its units.	[4]
	$\mathcal{K}_{p}=$	
	Units	
(ii)	When the temperature is increased by 50 °C, the value of the equilibrium constant K_p doubles. State and explain whether this reaction is endothermic or exothermic.	[2]
(iii)	Explain why phosphorus can form PCI ₅ and PCI ₃ but nitrogen can only form one chloride.	[2]
		17

(c)

10.	Cobal Table.		d copper are m	etals whic	h lie adjacen	t to each o	ther in the F	Periodic
	(a)	Use arrow the Cu ²⁺ i	vs in boxes to s on.	show the e	lectronic stru	ctures of th	ne copper a	tom and [2]
	Сорре	er atom, Cu	I					
	1s	2s	2p	3s	3p		3d	4s
	Coppe	er(II) ion, C	u ²⁺					
	1s	2s	2p	3s	3р		3d	4s
	(b)	Addition of [Co(H ₂ O) ₆ colour and) compounds a $_{6}$] ²⁺ complex ior of concentrated $_{6}$] ²⁺ causes a condition of the open condition of	n. hydrochlo blour chang species f	ric acid to a	solution co	ntaining formed. Gi origin of the	ve the

(c) Addition of ammonia solution to a pink solution of $[Co(H_2O)_6]^{2+}$ forms a yellow-brown solution of $[Co(NH_3)_6]^{2+}$, due to the reversible reaction:

$$[Co(H_2O)_6]^{2+} + 6NH_3 \rightleftharpoons [Co(NH_3)_6]^{2+} + 6H_2O$$

A student chose to study this change using colorimetry.

(i) The pink solution of $[Co(H_2O)_6]^{2+}$ absorbs light of wavelength 515 nm. Calculate the energy of the electron transition taking place, giving your answer in kJ mol⁻¹. [3]

$$h = 6.63 \times 10^{-34} \, J \, s$$
 $c = 3.00 \times 10^8 \, m \, s^{-1}$ $N_A = 6.02 \times 10^{23}$

 $Energy = \dots kJ \text{ mol}^{-1}$

(ii) The results of the experiment are shown on the graph below.

Following the experiment the student decided that the reversible reaction shown did not fully reflect what was occurring during the experiment.

$$[\text{Co}(\text{H}_2\text{O})_6]^{2^+} + 6\text{NH}_3 \ \rightleftharpoons \ [\text{Co}(\text{NH}_3)_6]^{2^+} + 6\text{H}_2\text{O}$$
 State whether you agree with her conclusion and explain your reasoning. [3]

14

11.	Some students are	provided with five	ve solutions	labelled A-E
-----	-------------------	--------------------	--------------	--------------

(a)

seen, including lilac for one solution and apple green for another.	
State what information is provided by these observations.	[1]

Flame tests were undertaken on all the solutions and a range of colours were

The five solutions contain only common cations and anions that the students have met during their A-level studies. No two solutions contain the same cations or the same anions. One of the solutions is known to be aqueous sodium hydroxide, while another contains nitrate ions.

The students mixed each pair of solutions and recorded the following observations.

	Solution A	Solution B	Solution C	Solution D
Solution E	pale blue precipitate	no visible change	white precipitate formed that dissolves when extra solution E is added	no visible change
Solution D	thick white precipitate	no visible change	white precipitate	
Solution C	white precipitate	bright yellow precipitate		
Solution B	brown solution with a white solid formed			

(b)

Explain your reasoning	for identification of the metal ion present in solution [
Solution A	
Solution A Solution B	
Solution B	

8

2.	A 25.00 cm ³ sample of sodium hydroxide solution was exactly neutralised by 24.25 cm ³ of sulfuric acid of concentration 0.176 mol dm ⁻³ .				
	(a)	Calculate the concentration of the sodium hydroxide solution, giving your answer to the appropriate number of significant figures.	3]		
		Concentration of sodium hydroxide = mol dr	m ⁻³		
	(b)	An alternative method to calculate the concentration of the sodium hydroxic solution is to use its pH.	de		
		A student measures the pH of the same sodium hydroxide solution as being 13.5. Calculate the concentration of this sodium hydroxide solution. Show your working.	g 3]		
		$[K_{\rm w} = 1.00 \times 10^{-14} {\rm mol}^2 {\rm dm}^{-6}]$			
		Concentration of sodium hydroxide = mol dr	m ⁻³		
	(c)	The two values calculated in (a) and (b) are consistent with each other. State and explain which method gives the more precise value.	1]		

(d)	The titration was repeated using 25.00 cm ³ of the weak acid ethanoic acid
	with a concentration equal to that of the sodium hydroxide.

(i)	Choose an appropriate indicator for this titration from the list belo	W,
	giving a reason for your answer.	[1]

Indicator	pH range
methyl red	4.2 - 6.3
methyl yellow	2.9 - 4.0
phenolphthalein	8.2 - 10.0

		methyl yellow	2.9 - 4.0	
		phenolphthalein	8.2 - 10.0	
(i	ii) Give t hydro	the expected pH of the solution in the solutio	on when 12.50 cm ³ of s 0 cm ³ of ethanoic acid	sodium . [2]
	[<i>K</i> _a	for ethanoic acid = $1.8 \times 10^{-}$	⁵ mol dm ⁻³]	
			nH –	
			ρι ι =	
a	mmonium s	of aqueous sulfuric acid with ulfate solution. State and exp nmonium sulfate.		

12

- 13. When a new substance is identified as having beneficial effects, chemists need to devise an appropriate route to synthesise the desired substance. They need to consider many factors, including the feasibility and rate of different routes.
 - (a) There are different ways to identify the feasibility of a chemical reaction. Two methods are the use of electrochemical data and the calculation of Gibbs' free energy.
 - (i) Use the data below to identify whether the reaction given is feasible at 298 K. Show your working in each case. [6]

$$2 \text{KMnO}_4 + 5 \text{H}_2 \text{O}_2 + 6 \text{HCI} \ \rightarrow \ 2 \text{MnCI}_2 + 8 \text{H}_2 \text{O} + 5 \text{O}_2 + 2 \text{KCI} \ \Delta \text{S}^\theta = 9 \text{ J K}^{-1} \text{ mol}^{-1}$$

Standard enthalpy changes of formation

Substance	Standard enthalpy change of formation, $\Delta_{\rm f} {\rm H}^{\rm \theta}$ / kJ mol ⁻¹	
KMnO₄(s)	-813	
H ₂ O ₂ (I)	-188	
HCI(g)	-92	
MnCl ₂ (s)	-482	
H ₂ O(I)	-286	
O ₂ (g)	0	
KCI(s)	-436	

Standard electrode potentials

Half-equation	E ^θ /V
$MnO_4^-(aq) + 8H^+(aq) + 5e^- \Rightarrow Mn^{2+}(aq) + 4H_2O(I)$	+1.52
$O_2(g) + 2H^+(aq) + 2e^- \Rightarrow H_2O_2(aq)$	+0.68

GCE AS and A LEVEL CHEMISTRY SPECIMEN ASSESSMENT MATERIALS 54

(ii)	In a laboratory the reaction is attempted by mixing a solution of acidified potassium manganate(VII) of concentration 0.5 mol dm ⁻³ and hydrogen peroxide solution of the same concentration at 350 K.
	State and explain which of the approaches in part (i) is most suitable for working out whether the reaction is feasible in this case and suggest how the experiment could be changed to ensure the feasibility calculation is valid. [3]

(b)	Reactions that are feasible are not always economically useful as the product
	may be formed too slowly. This can be helped by using a catalyst to increase
	the rate of the reaction

(i) The table below gives data on the initial rates of reaction for an acidcatalysed bromination of propanone.

$$Br_2(aq) + CH_3COCH_3(aq) \rightarrow HBr(aq) + CH_3COCH_2Br(aq)$$

[Br ₂] / mol dm ⁻³	[CH ₃ COCH ₃] / mol dm ⁻³	рН	Initial rate of reaction / mol dm ⁻³ min ⁻¹
0.10	0.80	0	1.36 × 10 ⁻³
0.10	0.80	1	1.36 × 10 ⁻⁴
0.10	0.40	1	6.80×10^{-5}
0.10	0.80	2	1.36 × 10 ⁻⁵
0.20	0.40	2	6.80 × 10 ⁻⁶

I.	Show that the reaction is first order with respect to $[H^{+}(aq)]$.	2]

II. Deduce a rate equation for this catalysed reaction, giving the value and units of the rate constant. [4]

k =	 	 	
Units	 	 	

GCE AS and A LEVEL CHEMISTRY SPECIMEN ASSESSMENT MATERIALS 56

	III.	A suggested mechanism for the process is given below.
		$CH_{3}COCH_{3} \ + \ Br_{2} \ \rightarrow \ [CH_{3}COBrCH_{3}]^{+} \ + \ Br^{-}$
		$[CH_3COBrCH_3]^+ \ \rightarrow \ [CH_3COCH_2]^+ \ + \ HBr$
		$[CH_3COCH_2]^+ \ + \ Br^- \ \to \ CH_3COCH_2Br$
		State and explain whether this proposed mechanism is correct [2]
(ii)	•	n why the use of homogeneous catalysts can be an nmental advantage but a problem in the isolation of the final ct. [2]